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Perturbation-induced radiation by the Ablowitz-Ladik soliton
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An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the
presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the
means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-
induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic
perturbations.
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I. INTRODUCTION

Dynamics of discrete solitons~intrinsic localized modes!
in nonlinear lattices has become a topic of intense rese
summarized in a number of excellent reviews@1#. Propaga-
tion properties of waves arising as a result of the interplay
nonlinearity with lattice discreteness can be quite disti
from those inherent in continuous nonlinear systems
hold much promise for applications in various physical, b
logical, and technological problems. Examples are ene
localization and transfer in systems of nonlinear oscillat
@2#, propagation of self-trapped beams in arrays of coup
nonlinear optical waveguides@3,4#, nonlinear charge and ex
citation transport in biological macromolecules@5,6#, local
denaturation of DNA double helix@7#, dynamics of localized
excitations in arrays of coupled Josephson junctions@8#,
propagation of optical spatial solitons in nonlinear photo
crystals@9#, and in diffraction-managed waveguide syste
@10#, creating discrete solitons in Bose-Einstein condens
@11#. Recently it was proposed@12# to use discrete solitons in
two-dimensional networks of nonlinear waveguides to re
ize functional operations such as blocking, routing, lo
functions, and time gating.

Most of the above phenomena are modeled by the disc
nonlinear Schro¨dinger ~DNLS! equation or, in a more gen
eral setting, by the discrete self-trapping equation@2#. Recent
developments in the study of the DNLS equation are
viewed in Refs.@13,14#. However, the standard DNLS equ
tion is nonintegrable@15,16# and does not exhibit exact sol
ton solutions, though it can be derived as a discretization
the integrable continuous NLS equation. Hence, numer
methods are generally used to investigate nonlinear la
dynamics on the basis of the DNLS equation.

On the other hand, there exists the integrable discret
tion of the NLS equation—the Ablowitz-Ladik~AL ! equa-
tion @17# which has exact soliton solutions and admits t
complete description in the framework of the inverse spec
method. Moreover, Konotopet al. @18# and Caiet al. @19#
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proved integrability of the inhomogeneous AL system in
external electric field of a particular form. Being unique fro
the mathematical point of view, the AL equation is less a
plicable in physics than the DNLS equation. Salerno@20#
introduced an equation that interpolates between the DN
and AL equations and permits studying~as a rule, numeri-
cally! the role of integrable and nonintegrable contributio
to lattice properties@21#. The AL-DNLS system with an im-
purity was investigated by Henniget al. @22#

A different point of view on the interrelation between th
AL and DNLS equations was posed in Refs.@23–25#. In a
definite region of parameters the DNLS equation can
treated as a perturbed version of the AL equation. Whe
perturbation is small, the discrete soliton perturbation the
can be successfully applied to analytically describe locali
excitations in a system governed by the DNLS equati
Such an approach was developed in Refs.@23–25# in the
framework of the adiabatic approximation, when
perturbation-induced radiation is ignored and a perturba
manifests itself as a slow evolution of initially constant A
soliton parameters. The evolution equations for the para
eters were derived by Vakhnenko and Gaididei@23#. Stability
aspects of Hamiltonian perturbations for the AL equati
were discussed by Kapitula and Kevrekidis@26#. Recently
the perturbative method to study the AL soliton dynam
was used in Ref.@27# in relation to energy transport in
a-helical proteins and in Ref.@28# for the soliton in a ran-
dom medium. Besides, Abdullaevet al. @29# proved the ex-
istence of discrete autosolitons in the AL model with line
and quintic damping, cubic amplification, and complex fi
tering ~the discrete complex Ginzburg-Landau model!. Exact
solutions of this model for certain relations between para
eters are given in Ref.@30#.

It is well known that a perturbation of the soliton is als
accompanied by radiation of small-amplitude dispersive
ear waves~or shape distortion! @31#, and a complete descrip
tion of the perturbed soliton dynamics necessitates acco
ing for both the soliton parameter evolution and the radiat
effects. Therefore, the main goal of the present paper i
develop a corresponding~relatively simple! formalism and to
extend, as far as possible, the applicability of analyti
methods in studying near-integrable nonlinear discrete s
tems. It should be noted in this connection that Konot
©2003 The American Physical Society10-1
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et al. @32# derived by means of the Gel’fand-Levitan-lik
summation equations the evolution equation for the refl
tion coefficient in the case of the inhomogeneous AL mo
but without using it for specific calculations. An estimatio
of radiative corrections to the AL soliton subjected to t
stochastic perturbation was outlined in the important pa
by Garnier@28# on the basis of conserved quantities.

Our approach utilizes the Riemann-Hilbert~RH! problem
@33#. The application of the RH problem to perturbed no
linear equations was initiated by Kivshar@34# on an example
of the Landau-Lifshitz equation. A purely algebraical calc
lation of higher-order corrections to the perturbed NLS so
ton and of radiation effects for a soliton in a doped fiber w
performed on the basis of the RH problem in Ref.@35#. Such
an approach has been proved to be efficient for a wide c
of continuous perturbed nonlinear equations, including m
ticomponent ones@36#.

This paper gives a self-contained exposition of the
soliton perturbation theory. In Sec. II we fix preliminary fac
concerning the AL spectral problem which are used in S
III to formulate the RH problem. In Sec. IV we describe
procedure to solve the RH problem with zeros and obt
immediately the AL soliton solution in Sec. V. We stress th
calculations within the RH problem do not use discrete a
logs of the Gel’fand-Levitan integral equations. Section VI
devoted to derivation of the evolution equations for the R
problem data associated with the AL soliton paramete
These equations exactly account for the perturbation
serve in the subsequent sections as the generating equa
for the perturbative expansion. Section VII contains br
exposition of the adiabatic approximation, whereas Sec. V
represents the main result of the paper—derivation of form
las for calculating radiative corrections from the continuo
part of the RH problem data. In Sec. IX we illustrate t
formalism by the examples of linear damping and quin
perturbations. Appendixes contain some technical detail
the applications of the RH problem.

II. THE ABLOWITZ-LADIK SPECTRAL PROBLEM

A. Jost solutions and asymptotics

Integrable discretized NLS equation~AL equation!

iunt1un111un2122un1uunu2~un111un21!50
~2.1!

for a scalar complex functionu which depends on discret
variablen, 2`,n,`, and timet admits the Lax represen
tation with the AL spectral problem@17#

J~n11!5~E1Qn!J~n!E21,
~2.2!

Qn5S 0 un

2un* 0 D , E5S z 0

0 z21D ,

and the evolutionary equation~subscriptt means time deriva-
tive!

Jt~n!5V~n!J~n!2J~n!V~z!,
06661
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V~n!5 i S un21* un zun2z21un11

z21un* 2zun21* 2un21un*
D 1V,

~2.3!

V~z!5
i

2
~z2z21!2s3 .

It means that Eq.~2.1! arises as a compatibility condition fo
Eqs.~2.2! and ~2.3!. Herez is a constant spectral paramet
and the star stands for the complex conjugation. The spe
problem in the form~2.2! differs slightly from the usual one
@17# and permits introducing matrix Jost solutionsJ6(n) of
Eq. ~2.2! with the unit asymptotics,J6(n)→1 as n→6`.
J6(n) solve Eq.~2.3! as well. The scattering matrixS(z)
defined by

J2~n!5J1~n!EnS~z!E2n ~2.4!

has the structure

S~z!5S a1 2b2

b1 a2
D .

The Jost solutions obey the conjugation condition

J6
† ~n,z̄!5v6~n!J6

21~n,z!, ~2.5!

wherez̄51/z* , ‘‘†’’ means the Hermitian conjugation and

v1~n!5)
l 5n

`

r l
21 , v2~n!5 )

l 52`

n21

r l , r l511uul u2.

We also obtain that detJ6(n,z)5v6(n), detS5v, where
v5)n52`

` rn and evidently v1(n)v5v2(n). From Eqs.
~2.4! and ~2.5! we obtain S†( z̄)5vS21(z) which gives
a1* ( z̄)5a2(z), b1* ( z̄)5b2(z).

The AL spectral problem~2.2! obeys the important sym
metry ~‘‘ P parity’’ !: if J(n,z) is a solution, then

PJ~n,z![s3J~n,2z!s3 ~2.6!

is a solution, too. It follows from Eq.~2.6! that diagonal
elements ofJ(n,z) are even functions ofz, while off-
diagonal entries are odd functions. The same symmetr
valid for the Jost solutions and the matrixS, the latter means
a6(z)5a6(2z), b6(z)52b6(2z).

Now we consider asymptotic behavior of the soluti
J(n,z) for z→`. Let

J~n,z!5J(0)~n!1z21J(1)~n!1O~z22!, z→`.

Inserting this expansion into Eq.~2.2! gives

J(0)~n11!5S 1 0

0 rn
D J(0)~n!, ~2.7!

while the potentialun is retrieved as

un52J12
(1)/J22

(0) . ~2.8!
0-2
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Note that the asymptotics~2.7! is consistent with the
P-parity property~2.6!. Similar results hold forz→0, when
J(n,z)5J(0)(n)1zJ(1)(n)1O(z2):

J(0)~n11!5S rn 0

0 1D J(0)~n!.

B. Analyticity

Let C6 be the domains in the complexz plane lying out-
side ~1! and inside~2! the unit circle uzu51. It follows
from the spectral problem~2.2! that the first column
J2

[1] (n,z) of the Jost functionJ2 and the second on
J1

[2] (n,z) of J1 are analytical inC1 ~and continuous forz
→1). Hence, the matrix function

C1~n,z!5~J2
[1] ,J1

[2] !~n,z!

is a solution of the spectral problem~2.2! and analytical as a
whole in C1 . We obtain from the conjugation formula, Eq
~2.5!, that the rows (J2) [1]

21 and (J1) [2]
21 are analytical inC2 .

As a result, the matrix function

C2
21~n,z!5S ~J2! [1]

21

~J1! [2]
21D ~n,z!

is analytical as a whole inC2 and solves the adjoint spectr
problem.

Analytical solutions can be expressed in terms of the J
functions. Indeed,

C15~J2
[1] ,J1

[2] !5~a1J1
[1]1z22nb1J1

[2] ,J1
[2] !

5J1EnS1E2n, ~2.9!

S1~z!5S a1 0

b1 1D ,

as well as

C15J2EnS2E2n, S25S 1 b2 /v

0 a1 /v D ,

S15SS2 .

It follows from these formulas that

detC1~n,z!5v1~n!a1~z!. ~2.10!

In the same way we obtain

C2
215EnT1E2nJ1

215EnT2E2nJ2
21 ,

T15S a2 /v b2 /v

0 1 D , T25S 1 0

b1 a2
D , ~2.11!

detC2
215v2

21~n!a2~z!, T1S5T2 .
06661
st

Asymptotic behavior of analytical solutions is derived d
rectly from that of the Jost functions and Eqs.~2.9! and
~2.11!:

C1~n,z!→S 1 0

0 v1~n!
D , z→`,

~2.12!

C2
21~n,z!→S v2

21~n! 0

0 1
D , z→0.

Hence, detC1→v1(n) as z→` which gives from Eq.
~2.10! a1(z)→1 as z→`. Similarly, a2(z)→1 as z→0.
The conjugation formula for the analytical solutions follow
from Eq. ~2.5!:

C1
† ~n,z!5B~n!C2

21~n,z̄!, B~n!5S v2~n! 0

0 v1~n!
D .

~2.13!

III. MATRIX RIEMANN-HILBERT PROBLEM

Having matrix functionsC1 andC2
21 which are analyti-

cal in two complementary domainsC1 andC2 of thez plane
and continuous on the contouruzu51, we can pose the ma
trix RH problem

C2
21~n,z!C1~n,z!5EnG~z!E2n, uzu51 ~3.1!

as a problem of analytical factorization of the matrix fun
tion G(z) defined on the unit circleuzu51. It follows from
Eqs.~2.9! and ~2.11! that the matrixG has the form

G5T1S15T2S25S 1 b2 /v

b1 1 D . ~3.2!

The normalization of the RH problem is given by Eq.~2.12!.
The RH problem~3.1! has a noncanonical normalizatio

depending on the potentialun . It has been proved@37# that it
is possible to reformulate the AL spectral problem~2.2! so as
to arrive at the RH problem with the canonical normalizati
and to give a Hamiltonian formulation with the canonic
Poisson brackets. However, the above canonicity is achie
at the cost ofnonlineardependence of the spectral proble
on the potential. Being useful for treating nonperturbative
equation and its integrable generalizations, such an appro
seems to be of less value for the case of perturbations.

In general, the matricesC1 andC2
21 have zeros in some

points zj and z̄k in their regions of analyticity, i.e.,
detC1(zj )50, zjPC1 , j 51,2, . . . ,N1 , and detC2

21( z̄k)
50, z̄kPC2 , k51,2, . . . ,N2 . We suppose that all zeros ar
simple and of finite number withN15N2[N ~in other
words, we have zero-index RH problem!. In virtue of the
P-parity, zeros appear in pairs as6zj and6 z̄k . Taking into
account Eqs.~2.10! and ~2.11!, we conclude that zeros o
C1 and C2

21 are given by zeros of the scattering matr
elements:a1(6zj )50 anda2(6 z̄k)50.
0-3
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IV. REGULARIZATION OF THE RIEMANN-HILBERT
PROBLEM

We will solve the RH problem~3.1! with zeros by means
of its regularization. This procedure consists in extract
from C6 rational factors which are responsible for the ex
tence of zeros. Indeed, near the pointzj we have
detC1(z);(z2zj ). Let us introduce a rational matrix func
tion J j

21511(zj2 z̄j )(z2zj )
21Pj , where Pj is a rank 1

projector,Pj
25Pj . BecausePj5diag(1,0) in an appropriate

basis, we obtain detJ j
215(z2 z̄j )(z2zj )

21. Therefore, the
productC1(z)J j

21(z) is regular in the pointzj ~its determi-
nant is nonzero in this point!. Regularization of the zero
2zj is given by a rational functionJ2 j

21512(zj2 z̄j )(z
1zj )

21P2 j . As a result, the matrix functionc1(n,z)
5C1(n,z)J j

21J2 j
21 is regular in the points6zj . In the

same manner we regularize the matrixC2
21(n,z) with zeros

in 6 z̄k . Namely, the matrix

c2
21~n,z!5J2kJkC2

21~n,z!

is regular in the points6 z̄k and

Jk512
zk2 z̄k

z2 z̄k

Pk , J2k511
zk2 z̄k

z1 z̄k

P2k .

Regularizing all 4N zeros of the RH problem~3.1!, we rep-
resent the functionsC6 as a product

C65c6G ~4.1!

of the rational matrix function

G~n,z!5J2NJNJ2(N21)JN21•••J21J1 ~4.2!

and the holomorphic matrix functionsc6(n,z) which solve
the regular RH problem~i.e., without zeros!:

c2
21~n,z!c1~n,z!5G~n,z!EnG~z!E2nG21~n,z!.

~4.3!

The appearance of a simple zerozj of the matrixC1 means
that there exists an eigenvectoru j & with zero eigenvalue,

C1~n,zj !u j &50. ~4.4!

Taking the Hermitean conjugation of this equality with a
count of the conjugation property~2.13!, we obtain
^ j uBC2

21(n,z̄j )50 with ^ j u5u j &†. Therefore, the projecto
Pj can be naturally defined as

Pj5
u j &^ j uB
^ j uBu j &

. ~4.5!

For the zero2zj we haveC1(n,2zj )u2 j &50. In virtue of
the P parity, both vectorsu j & and u2 j & are interrelated,
u2 j &5s3u j &, and thereforeP2 j5s3Pjs3.

For practical purposes, it is more convenient to deco
pose the products~4.2! into simple fractions. Following Refs
@38,39#, we obtain

G~n,z!512 (
j ,k51

2N
1

z2 z̄k

uyj&~D21! jk^ykuB, ~4.6!
06661
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G21~n,z!511 (
j ,k51

2N
1

z2zj
uyj&~D21! jk^ykuB

with new vectorsuyj&, where zeros are enumerated asz1 ,
2z1 ,z2 ,2z2 , . . . ,zN ,2zN ~and similarly for 6 z̄k),
whereas matrix elementsDk j are given by

Dk j5^yku
B

zj2 z̄k

uyj&. ~4.7!

It is seen from Eq.~4.6! that the asymptotic expansion fo
G(n,z) has the form

G~n,z!511z21G (1)~n!1O~z22!.

Because C15C1
(0)1z21C1

(1)1O(z22)5c1„11z21G (1)

1O(z22
……, we can choose az-independent functionc1 as a

solution of the regular RH problem~4.3!:

c1~n!5C1
(0)~n!5S 1 0

0 v1~n!
D , ~4.8!

where the last equality follows from Eq.~2.12!. Therefore, in
accordance with Eqs.~2.8! and ~4.1!, the solutionun(t) of
the AL equation can be retrieved from the solution of the R
problem as

un~ t !52 lim
z→`

~zC1!12

C122
52

C112
(1)

C122
(0)

52
G12

(1)

v1~n!
. ~4.9!

The matrixG is mainly determined by the vectoruyj&. Now
we derive a coordinate dependence of the vector. It follo
from the spectral problem that

C1~n11,zj !uyj ,n11,t&50

5@E~zj !1Qn#C1~n,zj !

3E21~zj !uyj ,n11,t&.

Hence, we can poseE21(zj )uyj ,n11,t&5uyj ,n,t&, or

uyj ,n,t&5En~zj !uyj ,t&, ~4.10!

where the vectoruyj ,t& does not depend onn. Similarly, it
follows from Eqs. ~2.3! and ~4.4! that uyj ,n,t& t
5V(zj )uyj ,n,t&. Therefore, the coordinate dependence
uyj ,n,t& is given as

uyj ,n,t&5En~zj !e
V(zj )tup&, up&5const. ~4.11!

Finally, we find from the identity detC1(zj ,n,t)50 that
zeroszj do not depend onn and t. Zeros 6zj , 6 z̄j and
vectorsuyj ,n,t& comprise the discrete part of the RH pro
lem data, while the functionsb6(z) entering the matrixG
~3.2! are responsible for the continuous data with the dep
dence ont of the form

Gt5@V,G#. ~4.12!

V. SOLITON SOLUTION

In what follows we will not dwell on evident formulas fo
the general case of 4N zeros. Instead we will give a detaile
account of the case of four zeros corresponding to a sol
0-4
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~Fig. 1!. Hence, after the regularization of the matrix R
problem with zeros6z1 and 6 z̄1, we arrive at the regula
RH problem~4.3!. Solitons are associated with the discre
part of the RH data, while the continuous data are now triv
(G51). Hence, the solutions of the regular RH problem a
written in accordance with Eq.~4.8! as

c1~n!5c2~n!5S 1 0

0 v1~n!
D . ~5.1!

It is possible to expressv1(n) @andv2(n)] throughG(n,z
50). Indeed, because nowC15C2 , we find from Eq.
~2.12! C1→diag„v2(n),1… asz→0 which gives the follow-
ing from C15c1G and Eqs.~4.11! and ~2.13!:

G~n,0!5diag„v2~n!,v1
21~n!…, ~5.2!

B5diag~G11~n,0!,G22~n,0!21!.

Thus, the reconstruction formula~4.9! for solitons is written
more conveniently as

FIG. 1. Typical arrangement of zeros corresponding to a sin
soliton.
06661
l
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un~ t !52G12
(1)~n!G22~n,0!. ~5.3!

Hence, it is the matrixG(n,z) that determines the soliton
solution. For simplicity, we will hereafter denote the vect
uy1 ,n,t& as un& with uy21 ,n,t&5s3un&. Denoting z1
5exp@(1/2)(m1 ik)# and (p1 /p2)5exp(a1iw), where p1
and p2 are components of the constant vectorup&, we find
from Eq. ~4.11! the vectorun& explicitly:

un&5e(1/2)(a1 iw)S e(1/2)(xn1 iwn)

e2(1/2)(xn1 iwn)D . ~5.4!

Here xn5mn22t sinhm sink1a, wn5kn12t(coshm cosk
21)1w.

As regards the matrixG, it follows from Eq. ~4.6! with
N51, z252z1 , and z̄252 z̄1 that

G~n,z!512
1

z2 z̄1

@ un&~D21!11̂ nuB1s3un&~D21!21̂ nuB#

2
1

z1 z̄1

@ un&~D21!12̂ nuBs31s3un&

3~D21!22̂ nuBs3#. ~5.5!

Calculating then matrix elementsDk j ~4.7! with detG(n,0)
5exp(2m), we obtain from Eq.~5.5!

G~n,z!512
sinhm

2~z2 z̄1!
F̃2~n!2

sinhm

2~z1 z̄1!
F̃1~n!,

~5.6!

G21~n,z!511
sinhm

2~z2z1!
F2~n!1

sinhm

2~z1z1!
F1~n!,

where

le
F̃2~n!5S expFm(n2
1

2
2x1

i

2
kG

coshm(n212x)

exp [ik(n2x)1 ia2m]

coshm(n212x)

exp [2 ik(n212x)2 ia1m]

coshm(n2x)
expF2m(n2

1

2
2x)1

i

2
kG

coshm(n2x)

D
F2~n!5S expFm(n2

1

2
2x1

i

2
kG

coshm(n2x)

exp [ik(n2x)1 ia2m]

coshm(n212x)

exp [2 ik(n212x)2 ia1m]

coshm(n2x)
expF2m(n2

1

2
2x)1

i

2
kG

coshm(n212x)

D
F̃1~n!52s3F̃2~n!s3 , F1~n!52s3F2~n!s3 . ~5.7!
0-5
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Here

x~ t !52t
sinhm

m
sink1x0 , x052

a

m
2

3

2
,

~5.8!

a~ t !52tS coshm cosk1
k

m
sinhm sink21D1a0 ,

a05w2
ak

m
2k.

As a result, we obtain from Eq.~5.3! the AL soliton solution
@17#

un~ t !5exp@ ik~n2x!1 ia#
sinhm

coshm~n2x!
. ~5.9!

Here and in what follows we write for simplicity cosh@m(n
2x)# as coshm(n2x). The AL soliton depends on four con
stant parametersm, k, x0, and a0 which determine soliton
mass 2m, its group velocityvgr52@(sinhm)/m#sink, soliton
maximum positionx(t) and phasea(t).

It should be noted for later use that in the presence o
perturbation Eqs. ~5.8! are modified due to possibl
perturbation-induced evolution of the soliton parameters:

x~ t !5
2

mE
t

sinhm~ t8!sink~ t8!dt81x0~ t !,

~5.10!

a~ t !52E t

@coshm~ t8!cosk~ t8!21#dt8

12
k

mE
t

sinhm~ t8!sink~ t8!dt81a0~ t !.

VI. PERTURBATION-INDUCED EVOLUTION
OF THE RH DATA: EXACT RESULTS

Having formulated the basic ingredients of the RH a
proach to the AL system, we now proceed to the consid
ation of the perturbed AL equation

iunt1un111un2122un1uunu2~un111un21!5er n .
~6.1!

The small parametere characterizes the perturbation amp
tude andr n describes the functional form of the perturbatio
To find corrections to the soliton caused by a perturbati
we first derive the corresponding evolution of the RH da
In order to distinguish between the ‘‘integrable’’ and ‘‘pe
turbative’’ contributions to the evolution equations, we w
assign the variational derivatived/dt to the latter. For ex-
ample, we writeidun /dt5er n , as follows from Eq.~6.1!,
or, in matrix form,

i
dQn

dt
5eR̂n , R̂n5S 0 r n

r n* 0 D . ~6.2!
06661
a

-
r-
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A. Continuous data

Consider the spectral problem~2.2!. The perturbation
causes a variationdQn of the potential which in turn leads to
a variation of the Jost solutions. It follows from Eq.~2.2! that
these variations are written in the form

E2nJ2
21~n!dJ2~n!En5 (

l 52`

n21

E2( l 11)J2
21

3~ l 11!dQlJ2~ l !El , ~6.3!

E2nJ1
21~n!dJ1~n!En52(

l 5n

`

E2( l 11)J1
21

3~ l 11!dQlJ1~ l !El ,

wheredQl5(dQl /dt)dt and we have useddJ6(n)→0 as
n→6`. Hence, due to the definition~2.4!, we obtain from
Eq. ~6.3! a variation of the scattering matrix:

dS

dt
52 i eS1Y1~z!S2

2152 i eT1
21Y2~z!T2 . ~6.4!

Here the matricesS6 and T6 are defined in Eqs.~2.9! and
~2.11! and we introduce the matrix function

Y6~Na ,Nb!5 (
l 5Na

Nb

E2( l 11)C6
21~ l 11!R̂lC6~ l !El ,

Y6~z!5Y6~2`,`!. ~6.5!

Note that they are the analytical solutionsC6 that enter
naturally the matricesY6 .

Now we derive a variation ofC1 . We have from Eq.
~2.9! that dC15dJ1EnS1E2n1J1EndS1E2n. The first
term on the right-hand side is transformed by means of
~6.3! to i eC1(n)EnY1(n,`)E2ndt, while the second term
due to Eq. ~6.4! and a trick dS15dSM11, M11
5diag(1,0), is written as2 i eC1(n)EnY1(z)M11E

2ndt.
Therefore, the variation ofC1(n) takes the form

dC1~n,z!

dt
52 i eC1~n,z!EnP1~n,z!E2n, ~6.6!

whereP1 is the evolution functional@36# defined here by

P1~n,z!5S Y111~2`,n21! 2Y112~n,`!

Y121~2`,n21! 2Y122~n,`!
D . ~6.7!

Therefore, in the case of perturbations the evolutionary eq
tion for C1 gains the additional term responsible for th
perturbation:

C1t5VC12C1V2 i eC1EnP1E2n. ~6.8!

Similarly,

dC2
21

dt
5 i eEnP2E2nC2

21, ~6.9!
0-6
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with

P2~n,z!5S Y211~2`,n21! Y212~2`,n21!

2Y221~n,`! 2Y222~n,`!
D
~6.10!

and

C2t
2152C2

21V1VC2
211 i eEnP2E2nC2

21. ~6.11!

Remarkably, the functionsY6 are interrelated by the matri
G entering the RH problem:

Y25GY1G21. ~6.12!

The evolution functionalsP6 play the key role in the analy
sis of a perturbation because they contain all needed in
mation about it@36#. It is seen from the definitions~6.5!,
~6.7!, and~6.10! that the matricesP6 are meromorphic~and
EnP6E2n are bounded! in C6 having simple poles at zero
of detC1(z) and detC2

21, respectively. Further, the evolu
tion equation forG follows easily from Eqs.~3.1!, ~6.8!, and
~6.11! and takes the form

Gt5@V,G#2 i e~GP12P2G!, ~6.13!

or, for G̃5exp(2Vt)Gexp(Vt),

G̃t52 i e~G̃e2VtP1eVt2e2VtP2eVtG̃!. ~6.14!

B. Discrete data

In the pointz1

C1~n,z1!un&50 ~6.15!

and near this point

P1~z!5P1
(reg)~z!1

1

z2z1
Resz5z1

P1~z!, ~6.16!

whereP1
(reg) is the regular part ofP1 in the pointz1 and

Resz5z1
stands for the residue atz5z1. It is shown in Ap-

pendix A that the evolution equation for the eigenvec
takes the form

un& t5V~z1!un&1 i eEn~z1!P1
(reg)~z1!E2n~z1!un&.

~6.17!

Remember that then dependence ofun& is given by Eq.
~4.10!, un&5En(z1)u p̃&, with the n-independent vectoru p̃&.
Therefore, the perturbation-induced evolution of the vec
up&5exp@2V(z1)t#up̃& is governed by the equation

up& t5 i ee2V(z1)tP1
(reg)~z1!eV(z1)tup&. ~6.18!

For notational convenience, the exponent implies herea
the integration with respect to time for the time-depend
discrete RH data. In the absence of perturbation, the ve
up& in Eq. ~6.18! coincides with that in Eq.~4.11!.

Evolution of zeroz1 is derived by taking the total time
derivative of detC1(z1)50. We obtain
06661
r-

r

r

er
t
or

z1t52F ~]/]t !detC1~z!

~]/]z!detC1~z!G
z1

.

Because (]/]z)detC152 i etrP1detC1 , detC1

5v1(n)a1(z) @see Eq. ~2.10!# and a1(z)5(z22z1
2)(z2

2 z̄1
2)21, the latter formula following froma1(z)5a1

(2z), lima(z)→1 asz→` anda1(6z1)50, we obtain a
simple equation

z1t5 i eResz5z1
trP1~n,z!. ~6.19!

It is important that left-hand sides of Eqs.~6.18! and ~6.19!
do not depend onn. Therefore, we can consider these equ
tions for n→1` where

P1~z!5S Y111~z! 0

Y121~z! 0D .

As a result, the evolution equations for the discrete RH d
are finally written as

z1t5 i eResz5z1
Y111~z!, ~6.20!

up& t5 i ee2V(z1)tS Y111
(reg)~z1! 0

Y121
(reg)~z1! 0

D eV(z1)tup&. ~6.21!

It should be noted that Eqs.~6.14!, ~6.20!, and~6.21! are
exact. However, they cannot be directly applied because
matricesP6 andY6 depend on unknown solutionsC6 of
the spectral problem with the perturbed potential. In the f
lowing sections we will describe for sufficiently smalle the
iterative RH problem-based procedure to consecutively
count for two main approximations: the leading-order ad
batic approximation and the next-order~the first-order! one.

VII. ADIABATIC APPROXIMATION

Within the adiabatic approximation, we ignore radiatio
effects and assume that the soliton adjusts its hyperbolic
cant shape to perturbation at the cost of slow evolution of
parameters. Evolution equations for the soliton parameter
the adiabatic approximation have the form

m t5e sinhm (
n52`

`
Im~Rn!coshm~n2x!

coshm~n112x!coshm~n212x!
,

~7.1!

kt52esinhm (
n52`

`
Re~Rn!sinhm~n2x!

coshm~n112x!coshm~n212x!
,

~7.2!

xt5
2

m
sinhm sink1

e

m
sinhm

3 (
n52`

`
~n2x!Im~Rn!coshm~n2x!

coshm~n112x!coshm~n212x!
,

~7.3!
0-7
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a t52S coshm cosk1
k

m
sinhm sink21D

1e (
n52`

` H @~n2x!sinhmsinhm~n2x!

2coshm coshm~n2x!#Re~Rn!1
k

m
~n2x!

3sinhm coshm~n2x!Im~Rn!J
3sechm~n112x!sechm~n212x!. ~7.4!

Here Rn5r nexp@2ik(n2x)2ia# and r n is constructed by
means of the AL soliton solution~5.9! . Equations~7.1!–
~7.3! have been obtained for the first time in Ref.@23#. The
derivation of Eqs.~7.1!–~7.4! within the RH problem ap-
proach is given in the Appendix B.

VIII. RADIATION EFFECTS

The continuous part of the RH data describes a distor
of the soliton shape and emission of small-amplitude disp
sive waves by soliton. To account for the continuous data,
should abandon the conditionG51 and admit az depen-
dence of the regular RH problem solutionsc6 . In other
words, we pose

G511eg~z!, c1~n,z!5c1
0 ~n!@11ef~n,z!#,

~8.1!

where c1
0 stands for the solution~5.1! of the regular RH

problem ~4.3! in the adiabatic approximation, whereas t
off-diagonal matricesg(z) andf(z) describe first-order cor
rections. Therefore, the reconstruction formula~4.9! takes
now the form

un52 lim
z→`

@zc1
0 ~11ef!G#12

@c1
0 ~11ef!G#22

52G12
(1)~n!G22~n,0!2ef12

(1)~n!G22~n,0!. ~8.2!

The first term on the right-hand side of Eq.~8.2! represents
the familiar soliton solution in the adiabatic approximati
and the second one is responsible for radiation~soliton shape
distortion!. For the derivation of Eq.~8.2! we employ the fact
that the off-diagonal matrixf satisfies the asymptotic cond
tion f→z21f (1)1O(z22) with

f (1)5S 0 f12
(1)

f21
(1) 0

D .

Evaluation off12
(1) and hence of radiation corrections

soliton solution reduces to solving the regular RH probl
~4.3! with G as in Eq. ~8.1!. Indeed, we havec2

21c151
1eGEng(z)E2nG21 and the jump of the piecewise holo
morphic function c(z)5$c1(z),zPC1 ;c2(z),zPC2%
across the contouruzu51 is written as
06661
n
r-
e

c12c25ec1
0 GEngE2nG21. ~8.3!

Here we omit terms with higher order ofe and invoke the
equality c2

0 5c1
0 @see Eq.~5.1!# valid in the adiabatic ap-

proximation. The Plemelj formula gives the following forz
PC1 :

c1~z!5c1
0 F 11

e

2p i Ruzu51

dz8

z82z
~GEngE2nG21!~z8!G .

Inserting here c1 from Eq. ~8.1! and performing the
asymptotic expansion atz→`, we obtain the expansion co
efficient

f (1)~n!52
1

2p i Ruzu51
dz~GEngE2nG21!~z! ~8.4!

determining the radiation correction~8.2!. Therefore, our
next step is concerned with finding the matrixg.

To this end, we turn to the evolution equation~6.14! for
the matrixG̃ which is evidently related tog:

G̃511eg̃, g̃5e2VtgeVt. ~8.5!

Substituting this equation into Eq.~6.14!, we obtain in the
first order ofe

i g̃ t5e2Vt~P12P2!eVt. ~8.6!

Becauseg̃ does not depend onn, we can putn→` in Eq.
~8.6! which gives

P1~n→`!2P2~n→`!5S Y1112Y211 2Y212

Y121 0 D .

Moreover, it follows from Eqs.~6.5! and ~8.1! that Y2

5Y1 in the first order ofe. As a result,

i g̃ t5e2VtS 0 2Y112

Y121 0 D eVt

and the equation forg̃12 takes the form

g̃12t5 i exp@2 i ~z2z21!2t#Y112. ~8.7!

It is important to stress that becauseY112 corresponds to the
first-order correction, we can replace in the definition~6.5! of
Y1 unknown solutionc1 of the regular RH problem~8.3!
by the known onec1

0 . Integrating then Eq.~8.7!, we can
find the matrixg ~8.5!.

The further stage is to consider the integrand in Eq.~8.4!.
It can be shown from (GEngE2nG21)12
5z22nG12(G

21)12g211z2nG11(G
21)22g12 and explicit ex-

pressions~5.7! for G that the term withg21 is multiplied by
sech2m(n2x21) and hence vanishes atn→6`. As a re-
sult, we are left with
0-8
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I 12[~GEngE2nG21!1255
z22z1

2

z22 z̄1
2

z2ng12, n→1`

z22 z̄1
2

z22z1
2

z2ng12, n→2`.

~8.8!

Let us summarize the main steps in calculating the radia
correction for a given perturbationr n . First, we should ex-
plicitly find the functionY112(z) from the definition~6.5!
with C15c1

0 G, c1
0 and G being given in Eqs.~5.1! and

~5.7!, respectively. Then we integrate Eq.~8.7! and obtain the
matrix g given in Eqs.~8.5! and ~8.1!. For the known func-
tion g12(z) we obtain the integrand~8.8!. Finally, after cal-
culating the integral~8.4! we arrive at the needed result.

In the following section we illustrate the proposed form
ism on an example of calculating the radiation corrections
the AL soliton in the case of some model perturbations.

IX. EXAMPLES

Here we apply our formalism to describe the perturb
AL soliton dynamics for the typical representatives of dis
pative and conservative perturbations—linear dampingr n
52 iun and quintic perturbationr n5uunu4un . The interplay
between the dissipative and conservative perturbations
the AL model is considered in the adiabatic approximat
by Abdullaev et al. @29# and numerically by Soto-Cresp
et al. @41#.

A. Linear damping

In this case ReRn50, ImRn52sinhm sechm(n2x), and
we have in the adiabatic approximation

k5const, sinhm5sinh~m0!e22et, m05m~ t50!,

xt5vgr2
2pe

m2

tanhm

sinh~p2/m!
sin 2px, da/dt5kxt .

In the process of obtaining the equation forxt we use the
Poisson summation formula@40#

(
n52`

`

f ~nm!5
1

mE2`

`

dy f~y!F112(
s51

`

cos
2psy

m G
~9.1!

and, following Ref.@24#, we restrict ourselves to the linea
harmonic term (s51) only. Higher harmonics contain th
factor exp(2p2s/m) which for m'1 is evidently small.
Hence, mass of the soliton decreases exponentially, its g
velocity acquires a constant value (52 sink) after some tran-
sient period~Fig. 2!, while its phase is governed by the ev
lution of the soliton positionx(t).

Now we embark on a calculation of radiation effects. F
lowing the prescriptions of Sec. VIII we find at first th
matrix functionY1 written in accordance with Eq.~6.5! as
06661
n

o

d
-

or
n

up

-

Y1~z!5 (
n52`

`

E2(n11)~n11!G21~n11!RnG~n!En.

~9.2!

Here

Rn5~c1
0 !21~n11!R̂c1

0 ~n!

5S 0 r nG22~n,0!21

r n* G22~n11,0! 0 D
and

G22~n,0!5em
coshm~n2x21!

coshm~n2x!
.

SubstitutingG andG21 ~5.6! into Eq. ~9.2!, we arrive at

Y1125z21
e2m1 ia2 ikx

coshm2cos~k22u!

3$@12coshm cos~k22u!#

3S11 i sinhm sin~k22u!S2%,

where

SH12J5 (
n52`

` eiknz22nH coshm~n2x!

sinhm~n2x!
J

coshm~n2x21!coshm~n2x11!
.

Calculating these sums by means of the Poisson form
~9.1!, we obtain a simple expression

Y11252
p

mz

exp~2m1 ia22iux!

coshm cosh@p~k22u!/2m#
. ~9.3!

Here we posez5exp(iu) bearing in mind subsequent inte
gration along the contouruzu51. What is more, because th
radiation correction~8.2! is multiplied bye, we restrict our-

FIG. 2. Evolution of the soliton mass (m52m) and group ve-
locity vgr in the case of linear damping fork5p/4, e50.03, and
m(t50)51.
0-9
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selves to the leading term in each sum. Integrating then
~8.7! for g̃12 with Y112 of the form of Eq.~9.3! and trans-
forming the result tog12 in accordance with Eq.~8.5!, we get

g1252
p

mz

e2m

coshm

exp~ ia22iux!

cosh@p~k22u!/2m#

12e2 iL(u)t

L~u!
.

Here L(u)5(k22u)vgr12(coshm cosk2cos2u) and,
within the first-order approximation, we can take asvph and
vgr their initial values. Therefore, we arrive at the integra
I 12 ~8.8! which determines the integral~8.4!. This integral
can be calculated by residues. The dominant contributio
provided by the third-order residue in the pointz5 z̄1 „note
that both cosh@p(k22u)/2m# and L~u! have simple zero in
this point…. The resulting expression is rather lengthy a
does not reproduce here. Instead we plot in Fig. 3 the e
lution of the perturbed AL solitonun ~8.2! with account for
this expression. The shape of the soliton changes periodic
due to the discreteness of the system, with simultaneous
creasing of mass in virtue of damping. More detailed conc
sion about the first-order contribution can be inferred fro
Fig. 4 where a differenceuunu2uusu is pictured. Hereus is
the AL soliton in the adiabatic approximation. The sha
distortion is mainly localized within the soliton ‘‘envelope

FIG. 3. Evolution of the perturbed AL solitonun ~8.2! with
account of the first-order correction. The soliton parameters are
same as in Fig. 2.

FIG. 4. The differenceuunu2uusu for different time intervals
indicative of the shape distortion effect. Hereus is the soliton in the
adiabatic approximation and the soliton parameters are the sam
in Fig. 2. There are no long-lived nonvanishing dispersive wave
06661
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and in general is asymmetric. Such a behavior agrees
the asymptotic representation of the first-order correction
n→1`:

un(rad)52ef12
(1)G22~n,0!'2

i e

2H
tanhm e2m1 ia1 ik~n2x!

3Fn2x2
sink

sinhm S 12
sinh 2m

2m DH21Ge(2m1 ik)n.

~9.4!

HereH5sinhm cosk2i coshm sink1(i/m)sinhm sink. It fol-
lows from this expression that there are no nonvanish
linear waves atn→`. The similar result takes place forn
→2`.

B. Quintic perturbation

It follows from the results of Sec. VII that for

Re~Rn!5sinh5msech5m~n2x!, Im~Rn!50

we have in the adiabatic approximation

m5const, xt52
sinhm

m
sink,

kt5
2ep

3m

sinh4m

sinh
p2

m

F2p4

m4
1

2p2

m2 S 12
3

sinh2m
D 1

1

3Gsin 2px.

~9.5!

We do not write here the evolution equation for the phasea
because of its lengthy form, though it is found quite imm
diately. Hence, soliton mass is preserved in the presenc
the quintic perturbation, while the parameterk(t) ~and hence
the group velocity! oscillates with a very small amplitud
near the initial value. Linear stability analysis demonstra
that the fixed points of the evolutions~9.5!, ks5pm, m
50,61,62, . . . , andxs5 l /2, l 50,61,62, . . . , arestable
for even~odd! m and odd~even! l.

Radiative corrections for the quintic perturbation a
much the same as for damping. Indeed, the functionY112
takes the form

Y11252
p

2m
e2m1 ia22iux

sinhm

cosh@p~k22u!/2m#

3@P3~u!22ei (k22u)1b~u!P4~u!#,

where

P3~u!5
1

3 S coshm1 i
k22u

m
sinhm D 3

1S 12
4

3
sinh2m D

3S coshm1 i
k22u

m
sinhm D1

2

3
coshm,

he

as
.

0-10
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P4~u!5
1

24S k22u

m
sinhm D 4

2
1

4 S 21
1

3
sinh2m D

3S k22u

m
sinhm D 2

1
1

2
~11cosh2m!

2coshm cos~k22u!,

b~u!5$sinhm@coshm2cos~k22u!#%21.

Therefore, the integrandI 12 is written as

I 1252
p

2m
e2m1 ia

sinhm

cosh@p~k22u!/2m#

z22z1
2

z22 z̄1
2

z2(n2x)21

3@P3~u!22ei (k22u)1b~u!P4~u!#
12e2 iL(u)t

L~u!
,

with the sameL(u), as before. The result of calculation o
the integral ~8.4! with the above integrand has the sam
structure as in Eq.~9.4!. What is more, the functionP3(u)
22ei (k22u) being zero forz5 z̄1 does not contribute to the
n2 order of the radiative correction.

X. CONCLUSION

We have proposed a formalism suitable for analytical
vestigation of dynamics of the AL soliton subjected to a p
turbation. This formalism provides a possibility of calcula
ing both evolution of the soliton parameters a
perturbation-induced radiation effects. Remarkably, it is
RH problem-based approach that has been proved to b
ficient for treating continuous nonlinear equations, both in
grable and nearly integrable, which turns out to be the na
ral basis to study discrete nonlinear systems. We h
demonstrated within this approach how to consistently
vance from an integrable to perturbed system, in so doing
only ingredient that should be added to the formalism
account for a perturbation is the evolution functionalP1 ~or
P2) introduced by Shchesnovich@36#. A natural step to fur-
ther extend the applicability of analytical methods in t
theory of discrete nonlinear systems is to consider ve
AL-type solitons @42#. Work in this direction is now in
progress.
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APPENDIX A: PERTURBED EVOLUTION
OF EIGENVECTOR

In this appendix we derive Eq.~6.17!. Taking the total
time derivative of Eq.~6.15! gives the following with ac-
count of Eqs.~6.8! and ~6.16!:

H V~n!C1~n!2C1~n!V2 i eC1~n!@EnP1
(reg)E2n

1~z2z1!21Resz5z1
~EnP1E2n!#

1zt

]

]z
C1~n!J

z5z1

un&1C1~n,z1!un& t50. ~A1!

Let us introduce a holomorphic functionP̃52 i e(z
2z1)EnP1E2n which evidently gives

P̃~z1!un&52 i eResz5z1
@EnP1~z!E2n#un&. ~A2!

On the other hand, representingP1(z) from Eq. ~6.8! as

2 i eEnP1~z!E2n5C1
21C1t2C1

21VC11V,

we obtain

P̃~z1!un&5@~z2z1!C1
21C1t#z1

un&52z1tun&. ~A3!

Comparing Eqs.~A2! and ~A3!, we arrive at

i eResz5z1
@EnP1~z!E2n#un&5z1tun&. ~A4!

Applying now C1(z1) to both sides of Eq.~A4!, we obtain
the important identity

C1~n,z1!Resz5z1
~EnP1E2n!50. ~A5!

Equations~A4! and ~A5! permit us to considerably simplify
Eq. ~A1!. Indeed, the last term in square brackets in Eq.~A1!
is rearranged by means of Eq.~A5! as

2 i eFC1~z!2C1~z1!

z2z1
Resz5z1

@EnP1~z!E2n#G
z1

un&

52 i eF ]

]z
C1~z!G

z1

Resz5z1
~EnP1~z!E2n!un&

52z1tF ]

]z
C1~z!G

z1

un&

and cancels the same term in Eq.~A1!. As a result, the evo-
lution equation for the vectorun& takes the form

un& t5V~z1!un&1 i eEn~z1!P1
(reg)~z1!E2n~z1!un&.
0-11
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APPENDIX B: ADIABATIC APPROXIMATION

Here we obtain within the RH problem approach Eq
~7.1!–~7.4! which govern the adiabatic dynamics of the A
soliton.

First of all we turn to Eq.~6.20!. In accordance with Eqs
~6.5!, ~4.1!, ~5.1!, and~5.2! we write

Resz5z1
Y111~z!

5Resz5z1F1

z (
n52`

`

G21~n11,z!c1
21~n11!

3R̂nc1~n!G~n,z!G
11

5
sinhm

2z1
F (

n52`

`

F2~n11!

3S 0 G22
21~n,0!r n

G22~n11,0!r n* 0
DG~n,z1!G

11

.

With account of explicit expressions~5.6! and ~5.7! for F2

andG we obtain

z1t52
i e

4
z1sinhm

3 (
n52`

` Rnem(n2x)2Rn* e2m(n2x)

coshm~n112x!coshm~n212x!
,

where Rn5r nexp@2ik(n2x)2ia#. Then from the definition
z15exp@(1/2)(m1 ik)# we easily derive Eqs.~7.1! and~7.2!.

In order to obtain Eqs.~7.3! and ~7.4!, we should at first
calculateY (reg)(z1):
.

Y (reg)~z1!5@Y~z!2~z2z1!21Resz5z1
Y~z!#z1

5 (
n52`

`

E2(n11)

3S 11
sinhm

4z1
F1~n11! DRnG~n,z1!En

1 lim
z→z1

sinhm

2~z2z1! (
n52`

`

@E2(n11)~z!F2~n11!

3RnG~n,z!En~z!2E2(n11)~z1!F2~n11!

3RnG~n,z1!#. ~B1!

HereRn5c1
21(n11)R̂nc1(n). The second term on the rh

of Eq. ~B1! gives the ratio 0/0 in the limitz→z1. Using the
l’Hôpital rule, we ultimately arrive at

Y (reg)~z1!

5 (
n52`

`

E2(n11)~z1!H S 12
sinhm

2z1
s3F2~n11!

1
sinhm

4z1
F1~n11! DRnG~n,z1!

1
sinh2m

4
F2~n11!RnS F̃2~n!

~z12 z̄1!2
1

F̃1~n!

~z11 z̄1!2D
2n

sinhm

2z1
@s3 ,F2~n11!RnG~n,z1!#J En~z1!.

Therefore,
Y11
(reg)~z1!5

1

8 (
n52`

`

@~3Rnem(n2x)2Rn* e2m(n2x)!sinhm12~Rncoshm1Rn* e2m!em(n2x)24Rnsechm~n112x!#

3sechm~n112x!sechm~n212x!, ~B2!

Y21
(reg)~z1!5

1

4 (
n52`

` z1
2n11e2 ik(n2x)2 ia

coshm~n112x!coshm~n212x! F S coshm2
3

2
sinhm DRn

1S e2m12e2m(n212x)coshm~n2x!1
1

2
e22m(n2x)sinhm DRn* 22n sinhm~Rn1e22m(n2x)Rn* !G . ~B3!

Then we obtain from Eq.~6.21! the following evolution equations for the components of the vectorup&:

p1t5 i eY11
(reg)~z1!p1 ,

p2t5 i eY21
(reg)~z1!expF i E t

~z1
21z1

2222!dt Gp1 .
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Because (p1 /p2)5exp(a1iw), we have the following from
Eq. ~B2!:

d

dt
~a1 iw!5

i e

4 (
n52`

`

@~3Rnem(n2x)2Rn* e2m(n2x)!sinhm

12n~Rnem(n2x)2Rn* e2m(n2x)!

3sinhm22Rn* em coshm~n2x!#

3sechm~n112x!sechm~n212x!

which results in

at52e sinhm (
n52`

` S n1
3

2D
3

Im~Rn!coshm~n2x!

coshm~n112x!coshm~n212x!
, ~B4!
,

s-

nd

e

e-

hi

s

06661
w t5e (
n52`

`

@n sechm sechm~n2x!2coshm coshm~n2x!

1 1
2 sinhm sinhm~n2x!#Re~Rn!sechm~n112x!

3sechm~n212x!.

It follows from Eqs.~5.8! and ~5.10! that

xt5
2

m
sinhm sink2

1

m F S x1
3

2Dm t1atG ,
a t52S coshm cosk1

k

m
sinhm sink21D

1S x1
1

2D kt2S x1
3

2D k

m
m t2

k

m
at1w t .

Inserting here Eqs.~7.1!, ~7.2!, ~B3!, and ~B4!, we finally
obtain Eqs.~7.3! and ~7.4!.
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~1991!; Zh. Éksp. Teor. Fiz.100, 1129 ~1991! @Sov. Phys.
JETP73, 623 ~1991!#.

@36# V.S. Shchesnovich, Chaos, Solitons Fractals5, 2121 ~1995!;
Phys. Rev. E65, 046614 ~2002!; J. Math. Phys.43, 1460
~2002!; V.S. Shchesnovich and E.V. Doktorov, Phys. Rev.
55, 7626~1997!; Physica D129, 115 ~1999!.
06661
@37# V.S. Gerdjikov, M.I. Ivanov, and P.P. Kulish, J. Math. Phys.25,
25 ~1984!.

@38# T. Kawata, inAdvances in Nonlinear Waves, edited by L. Deb-
nath ~Pitman, London, 1984!, Vol. 1, p. 210.

@39# E.V. Doktorov and V.M. Rothos, Phys. Lett. A314, 59 ~2003!.
@40# P.M. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!, p. 466.
@41# J.M. Soto-Crespo, N. Akhmediev, and A. Ankiewicz, Phy

Lett. A 314, 126 ~2003!.
@42# M.J. Ablowitz, B. Prinari, and D. Trubatch, Discrete and Co

tinuous Nonlinear Schro¨dinger Systems, APPM Report No
473, 2001~unpublished!.
0-14


