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Perturbation-induced radiation by the Ablowitz-Ladik soliton

E. V. Doktorov:* N. P. Matsuk&: " and V. M. Rotho&*
1B.I. Stepanov Institute of Physics, 68 F. Skaryna Avenue, 220072 Minsk, Belarus
2Institute of Mathematics, 11 Surganov Street, 220072 Minsk, Belarus
3School of Mathematical Sciences, Queen Mary College, University of London, Mile End Road, London E1 4NS, United Kingdom
(Received 16 April 2003; published 24 December 2003

An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the
presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the
means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-
induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic

perturbations.
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[. INTRODUCTION proved integrability of the inhomogeneous AL system in an

external electric field of a particular form. Being unique from

Dynamics of discrete soliton@ntrinsic localized modes the mathematical point of view, the AL equation is less ap-
in nonlinear lattices has become a topic of intense researgblicable in physics than the DNLS equation. Salef26)]
summarized in a number of excellent revieMs. Propaga- introduced an equation that interpolates between the DNLS
tion properties of waves arising as a result of the interplay oind AL equations and permits studyifgs a rule, numeri-
nonlinearity with lattice discreteness can be quite distinctcally) the role of integrable and nonintegrable contributions
from those inherent in continuous nonlinear systems andb lattice propertie$21]. The AL-DNLS system with an im-
hold much promise for applications in various physical, bio-purity was investigated by Hennigt al. [22]
logical, and technological problems. Examples are energy A different point of view on the interrelation between the
localization and transfer in systems of nonlinear oscillatorsAL and DNLS equations was posed in Reff23-25. In a
[2], propagation of self-trapped beams in arrays of couplediefinite region of parameters the DNLS equation can be
nonlinear optical waveguidd8,4], nonlinear charge and ex- treated as a perturbed version of the AL equation. When a
citation transport in biological macromoleculgs,6], local  perturbation is small, the discrete soliton perturbation theory
denaturation of DNA double helik’], dynamics of localized can be successfully applied to analytically describe localized
excitations in arrays of coupled Josephson junctifBk  excitations in a system governed by the DNLS equation.
propagation of optical spatial solitons in nonlinear photonicSuch an approach was developed in R¢E8—25 in the
crystals[9], and in diffraction-managed waveguide systemsframework of the adiabatic approximation, when a
[10], creating discrete solitons in Bose-Einstein condensatperturbation-induced radiation is ignored and a perturbation
[11]. Recently it was proposdd?2] to use discrete solitons in manifests itself as a slow evolution of initially constant AL
two-dimensional networks of nonlinear waveguides to real-soliton parameters. The evolution equations for the param-
ize functional operations such as blocking, routing, logiceters were derived by Vakhnenko and Gaid{@s]. Stability
functions, and time gating. aspects of Hamiltonian perturbations for the AL equation

Most of the above phenomena are modeled by the discret@ere discussed by Kapitula and Kevrekid®6]. Recently
nonlinear Schrdinger (DNLS) equation or, in a more gen- the perturbative method to study the AL soliton dynamics
eral setting, by the discrete self-trapping equaf@ Recent was used in Ref[27] in relation to energy transport in
developments in the study of the DNLS equation are rew-helical proteins and in Ref28] for the soliton in a ran-
viewed in Refs[13,14]. However, the standard DNLS equa- dom medium. Besides, Abdullaet al. [29] proved the ex-
tion is nonintegrabl¢15,16 and does not exhibit exact soli- istence of discrete autosolitons in the AL model with linear
ton solutions, though it can be derived as a discretization odnd quintic damping, cubic amplification, and complex fil-
the integrable continuous NLS equation. Hence, numericaering (the discrete complex Ginzburg-Landau modElxact
methods are generally used to investigate nonlinear latticeolutions of this model for certain relations between param-
dynamics on the basis of the DNLS equation. eters are given in Ref30].

On the other hand, there exists the integrable discretiza- It is well known that a perturbation of the soliton is also
tion of the NLS equation—the Ablowitz-LadikAL) equa- accompanied by radiation of small-amplitude dispersive lin-
tion [17] which has exact soliton solutions and admits theear wavegor shape distortion31], and a complete descrip-
complete description in the framework of the inverse spectrafion of the perturbed soliton dynamics necessitates account-
method. Moreover, Konotopt al. [18] and Caiet al. [19] ing for both the soliton parameter evolution and the radiation

effects. Therefore, the main goal of the present paper is to
develop a correspondir(gelatively simple formalism and to

*Electronic address: doktorov@dragon.bas-net.by extend, as far as possible, the applicability of analytical
"Electronic address: matsuka@im.bas-net.by methods in studying near-integrable nonlinear discrete sys-
*Electronic address: v.m.rothos@qgmul.ac.uk tems. It should be noted in this connection that Konotop
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et al. [32] derived by means of the Gelfand-Levitan-like u*_.up ZU,—2Z MU q
summation equations the evolution equation for the reflec- Vim)=i| __, N . | T,

tion coefficient in the case of the inhomogeneous AL model Z Up=2ZU_y  “Un-aly

but without using it for specific calculations. An estimation 2.9

of radiative corrections to the AL soliton subjected to the
stochastic perturbation was outlined in the important paper
by Garnier[28] on the basis of conserved quantities.

Our approach utilizes the Riemann-HilbéRH) problem It means that Eq(2.1) arises as a compatibility condition for
[33]. The application of the RH problem to perturbed non-Egs.(2.2) and(2.3). Herez is a constant spectral parameter
linear equations was initiated by Kivsh@4] on an example and the star stands for the complex conjugation. The spectral
of the Landau-Lifshitz equation. A purely algebraical calcu-problem in the form(2.2) differs slightly from the usual one
lation of higher-order corrections to the perturbed NLS soli-[17] and permits introducing matrix Jost solutiohs(n) of
ton and of radiation effects for a soliton in a doped fiber wasEq. (2.2) with the unit asymptotics).(n)—1 asn— *o.
performed on the basis of the RH problem in R86]. Such  J.(n) solve Eq.(2.3 as well. The scattering matri$(z)
an approach has been proved to be efficient for a wide clagdefined by
of continuous perturbed nonlinear equations, including mul-
ticomponent onef36]. J_(n)=J,(NE"S(2)E™" 2.9

This paper gives a self-contained exposition of the AL
soliton perturbation theory. In Sec. Il we fix preliminary facts has the structure
concerning the AL spectral problem which are used in Sec.

[l to formulate the RH problem. In Sec. IV we describe a S(z)=
procedure to solve the RH problem with zeros and obtain

immediately the AL soliton solution in Sec. V. We stress that

calculations within the RH problem do not use discrete anaThe Jost solutions obey the conjugation condition

logs of the Gel'fand-Levitan integral equations. Section VI is

devoted to derivation of the evolution equations for the RH IL(nD=v.(n)Iz'n,2), (2.9
problem data associated with the AL soliton parameters. .

These equations exactly account for the perturbation anwherez=1/z", “t” means the Hermitian conjugation and
serve in the subsequent sections as the generating equations . ne1

for the perturbative expansion. Section VII contains brief B 1 B _ 2
exposition of the adiabatic approximation, whereas Sec. VI U+(n)_|1:[n P v_(n)—lzl__[w pro =1t
represents the main result of the paper—derivation of formu-

las for calculating radiative corrections from the continuouswe also obtain that dét.(n,z)=v.(n), detS=v, where
part of the RH problem data. In Sec. IX we illustrate the, —y;__,  and evidentlyv . (n)v=v_(n). From Egs.

formalism by the examples of linear damping and quintic 4 and (2.5 we obtain ST(zZ)=vS %(z) which gives
perturbations. Appendixes contain some technical details *(@=a_(2), b* @ =b_(2).

the applications of the RH problem. The AL spectral problent2.2) obeys the important sym-
metry (“ P parity”): if J(n,z) is a solution, then

Q(z)=|§(z—z’l)2(r3.

a+ _b_

b, a_/)’

II. THE ABLOWITZ-LADIK SPECTRAL PROBLEM

A. Jost solutions and asymptotics PI(n,2)=03(n, ~2) o (2.

Integrable discretized NLS equati¢AL equation is a solution, too. It follows from Eq(2.6) that diagonal

) 5 elements ofJ(n,z) are even functions ofz, while off-
IUpi+Unyr+ Uy o1~ 22U+ |Up|*(Up g1+ U, 1) =0 diagonal entries are odd functions. The same symmetry is

(2.9 valid for the Jost solutions and the matBxthe latter means
a-(z2)=a-(—2), b-(2)=—-b.(-2).

Now we consider asymptotic behavior of the solution
J(n,z) for z—o. Let

for a scalar complex function which depends on discrete
variablen, —o<n<o, and timet admits the Lax represen-
tation with the AL spectral problefil7]

I(n+1)=(E+QuI(mE I(n,2)=3n)+2" M) +0(z?), z—.

(220 Inserting this expansion into E(R.2) gives

o ( 0 u, e (z 0 )
n— ) = —1 /> 1 0
~un 0 0z IO(n+ 1):<0 )J(O)(n), 2.7
n
and the evolutionary equatigqaubscriptt means time deriva-
tive) while the potentialu, is retrieved as
J(n)=V(N)3I(n)—I(n)Q(2), U= — 35198 2.9
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Note that the asymptotic§2.7) is consistent with the

‘P-parity property(2.6). Similar results hold foz— 0, when
J(ﬂ,Z):J(O)(n)+ZJ(1)(ﬂ)+O(ZZ):

J(O)(n+ 1) =

pn O

B. Analyticity

Let C. be the domains in the compleplane lying out-
side (+) and inside(—) the unit circle|z|=1. It follows
from the spectral problem(2.2) that the first column
J®(n,z) of the Jost functionJ_ and the second one
J?l(n,z) of J, are analytical inC, (and continuous foz
—1). Hence, the matrix function

¥, (n,z)=3" 3 (n,z)

is a solution of the spectral proble(®.2) and analytical as a
whole inC, . We obtain from the conjugation formula, Eqg.
(2.5), that the rows ) ;; and () ] are analytical irC._ .
As a result, the matrix function

(30

v (n,z)—((J+)[2]1)(n,z)

is analytical as a whole i@_ and solves the adjoint spectral
problem.

Analytical solutions can be expressed in terms of the Jost

functions. Indeed,

v, =31 9h =(a, JM+z720p, g2 5l2]

=J,E"S,E™", (2.9
a, O
S+(Z)=(b+ 1),
as well as
1 b_ /v
Vv.=J E'SE" S = 0 a+/v),
S, =SS..
It follows from these formulas that
detV,(n,z)=v (n)a,(2). (2.10
In the same way we obtain
Y ol=E'T,ET"I =ET_ENY,
a_/lv b_lv 1 0
=, L T_:<b+ L | @1
detv "=y Yn)a_(z), T,.S=T_.
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Asymptotic behavior of analytical solutions is derived di-
rectly from that of the Jost functions and Ed2.9) and

(2.1D:

o w0l
v,.(n,z)— 0 v.(m) Z—>,
(2.12
. (vzl(n) o)
v_*(n,z)— 0 1) z—0.

Hence, detv, —uv (n) as z—o which gives from Eq.
(2.10 a.(z)—1 asz—x. Similarly, a_(z)—1 asz—0.
The conjugation formula for the analytical solutions follows
from Eq.(2.5):

v_(n) 0

0 U+(n)).
(2.13

vl(n,z)=B(n)¥_-(nz), B(n)=<

IIl. MATRIX RIEMANN-HILBERT PROBLEM

Having matrix functions¥ . and¥ ~! which are analyti-
cal in two complementary domaiits andC_ of thez plane
and continuous on the contolr|=1, we can pose the ma-
trix RH problem
¥-Yn,2¥_ (n,z2)=E"G(2)E™", |z]=1 (3.1
as a problem of analytical factorization of the matrix func-
tion G(z) defined on the unit circléz|=1. It follows from
Egs.(2.9 and(2.1)) that the matrixG has the form

( 1 b_ /v)
b, 1)
The normalization of the RH problem is given by E}.12.

The RH problem(3.1) has a noncanonical normalization
depending on the potentia},. It has been prove[87] that it
is possible to reformulate the AL spectral problér?) so as
to arrive at the RH problem with the canonical normalization
and to give a Hamiltonian formulation with the canonical
Poisson brackets. However, the above canonicity is achieved
at the cost ohonlineardependence of the spectral problem
on the potential. Being useful for treating nonperturbative AL
equation and its integrable generalizations, such an approach
seems to be of less value for the case of perturbations.

In general, the matrice¥ . and¥ ~* have zeros in some
points z; and z in their regions of analyticity, i.e.,
det¥,(z)=0, zjeCy, j=1,2,... N, , and deW _'(z,)
=0,zeC_,k=1,2,... N_. We suppose that all zeros are
simple and of finite number witiN, =N_=N (in other
words, we have zero-index RH problgnin virtue of the
P-parity, zeros appear in pairs &z; and +z,.. Taking into
account Egs(2.10 and (2.11), we conclude that zeros of

¥, and P! are given by zeros of the scattering matrix
elementsa, (+z)=0 anda_(*z)=0.

G=T.S,=T_S = (3.2

066610-3
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IV. REGULARIZATION OF THE RIEMANN-HILBERT
PROBLEM

We will solve the RH problent3.1) with zeros by means

PHYSICAL REVIEW E68, 066610 (2003

2N

1
I nz=1+ E —|y,><D Yik(yl B

of its regularization. This procedure consists in extractingwith new vectorsly;), where zeros are enumerated s

from W .. rational factors which are responsible for the exis-—

tence of zeros. Indeed, near the poiaf we have
det\If+(z) (z—z). Let us introduce a rational matrix func-
tion z]’ }l+(zJ z))(z—z)" 1P where P; is a rank 1
projector,P?= =P;. BecauseP dlag(l 0) in an appropriate
basis, we obtaln da '=(z-7Z)(z—z)*. Therefore, the
product¥  (2)E (z) is regular in the poing; (its determi-
nant is nonzero in this point Regulanzatlon of the zero
—z; is given by a rational functior =1-(zj—z)(z
+z)" 1P . As a result, the matrix functionp+(n,z)
=v_(n, z)” 'E-] is regular in the pomtstz In the
same manner we regularize the matix 1(n,z) with zeros
in =z,. Namely, the matrix

y_t(nz2)=E

is regular in the points-z, and

Ev T (n,z)

Regularizing all N zeros of the RH problen3.1), we rep-
resent the function¥ . as a product

=

of the rational matrix function

4.9

[(nz)=E \EnE-(n-1En-1" " E-1E1 (4.2

and the holomorphic matrix functiong.. (n,z) which solve
the regular RH problenii.e., without zeros

Y (n,2) ¢, (n,2)=0(n,2)E"G(2)E""T "1(n,z).
4.3

The appearance of a simple zexoof the matrix¥ , means
that there exists an eigenvec{g} with zero eigenvalue,

v, (n,z)|j)=0. (4.9

Taking the Hermitean conjugation of this equality with ac-

count of the conjugation property2.13, we obtain
(i|B¥~*(n,z))=0 with (j|=|j)". Therefore, the projector
P; can be naturally defined as
NGB
Pj:|J_><l|_ .
(ilBIi)
For the zero—z; we have¥ . (n,—z)|—j)=0. In virtue of

the P parity, both vectors|j) and |-j) are interrelated,
|—j)=03lj), and therefore®_;=o3P;0s.

(4.9

21,2,,— 25, ...,2y,—2y (and similarly for =*=z),
whereas matrix element3,; are given by
<YK| |y]> (47)

It is seen from Eq(4.6) that the asymptotic expansion for
I'(n,z) has the form

I'(n,z)=1+zTY(n)+0(z ?).

Because V,=¥Q+z 1M +0(z7 Y=y, Q+z7TW
+0(z ?)), we can choose &independent functiog, as a
solution of the regular RH probler#.3):

o
0 v.(n)’ (4.9

where the last equality follows from E(R.12). Therefore, in
accordance with Eqg€2.8) and (4.1), the solutionu,(t) of

the AL equation can be retrieved from the solution of the RH
problem as

1
w+<n>=\1f‘f’<n>=(

1 1
vy, Ty

(Z‘I’+)12:_ _
w0, u.(n)

\P+22

up(ty=—1i (4.9

Z—®

The matrixI" is mainly determined by the vectdy;). Now
we derive a coordinate dependence of the vector. It follows
from the spectral problem that

V. (n+1z)]y;,n+11t)=0
=[E(zj)) + Qn]¥ 1(n,z)
XE_l(ZJ‘)|yj ,n+ 1,t>

Hence, we can posE™!(z))|y;,.n+1t)=|y;,n,t), or
ly;.n.t)=E"(z))ly; .t), (4.10

where the vectofy;,t) does not depend on. Similarly, it
follows from Eqgs. (2.3 and (4.4 that [y;,n,t),
=Q(zj)|yj ,n,t). Therefore, the coordinate dependence of
lyj.n,t) is given as

lyj.n,ty=E"(z)e*@)|p), (4.10)
Finally, we find from the identity de¥,(z,n,t)=0 that
zerosz; do not depend om andt. Zeros *z;, *z; and
vectors|yj ,n,t) comprise the discrete part of the RH prob-
lem data, while the functionb..(z) entering the matrixG
(3.2 are responsible for the continuous data with the depen-
dence ort of the form

G,=[Q,G].

|p)=const.

(4.12

For practical purposes, it is more convenient to decom-

pose the productgl.2) into simple fractions. Following Refs.
[38,39, we obtain
2N 1
r(nz)=1- > ——
k=1 z-7,

(DY yuB, (4.6

V. SOLITON SOLUTION

In what follows we will not dwell on evident formulas for
the general case ofNl zeros. Instead we will give a detailed
account of the case of four zeros corresponding to a soliton

066610-4
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® Un(t) = =T {P(MT5(n,0). (5.3

. Hence, it is the matriX’(n,z) that determines the soliton

C, Z1 solution. For simplicity, we will hereafter denote the vector
lyi,n,ty as |[n)y with |y_q;,n,t)=o03ln). Denoting z;
. =exd(1/2)(u+ik)] and (p1/p,)=expl@+ip), where p;
' and p, are components of the constant vedtpy, we find
1 from Eq. (4.11) the vector|n) explicitly:
s C-
! [ e tien)

. [ny=e(t/2@+ie) e(l/Z)(Xn+i<pn))' (5.9

Here x,= un—2t sinhusink+a, ¢,=kn+ 2t(coshu cosk
—1D)+¢.

FIG. 1. Typical arrangement of zeros corresponding to a single As regards the matriX’, it follows from Eg. (4.6) with
soliton. N=1, z,=—z;, andz,= —z,; that

(Fig. 1). Hence, after the regularization of the matrix RH

problem with zerost z; and +z;, we arrive at the regular ['(n,z)=1- —— [IN)(D ™) 1(n|B+o3/n)(D 1) p4(n|B]
RH problem(4.3). Solitons are associated with the discrete -7

part of the RH data, while the continuous data are now trivial 1

(G=1). Hence, the solutions of the regular RH problem are _ -1 "

written in accordance with Eq4.8) as Z+?l[|n>(D )1AN[Bos+ o)

0 v.(n) (5.7

1 0
go(n)=¢_(n)= .
It is possible to express, (n) [andv _(n)] throughI'(n,z
=0). Indeed, because noW ,=W¥_, we find from Eq.
(2.12 ¥, —diaglv _(n),1) asz— 0 which gives the follow-

X (D 1),4n|Bos]. (5.5

Calculating then matrix elemenB,; (4.7) with deti"(n,0)
=exp(2u), we obtain from Eq(5.5

ing from ¥ =y, T and Egs(4.1) and (2.13: T(nz)=1- ﬂ,’;(n)_ ﬂrﬂ(n)
, ) ’ 2(z-2y) 20z+7)
I'(n,0)=diagv _(n),v;"(n)), (5.2 (5.6)
B=diag ['11(n,0,[p(n,0) ). Fl(n,z):l+;|2n—_hz'u)F(n)+ Zi'znf;‘) F. (),
1 1
Thus, the reconstruction formu(d.9) for solitons is written
more conveniently as where
|
1 [ ) .
exp ,u(n—z—erEk expik(n=x)+ia—u]
B coshe(n—1-%) coshu(n—1-x)
F-(m= 1 i
exp[—ik(n—1—-x)—ia+u] exp —M(n—z—x)+§k}
coshu(n—x) coshi(n—x)
exp ,u(n—%—erlzk} explik(n=x)+ia—u]
cosha(n—x) coshu(n—1-x)
F-(m= 1 i
exp[—ik(n—=1—-x)—ia+u] exp —M(n—z—x)—e—ik}
cost(n=x) coshu(n—1-x)
Fi(n=—0sF (nos, F.(nN)=-0sF (nos. (5.7)
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Here A. Continuous data
inh 3 Consider the spectral problert2.2). The perturbation
x(t)=2t sin 'usink+ Xo, Xo=— a_ -, causes a variatiodQ, of the potential which in turn leads to
2 a variation of the Jost solutions. It follows from E@.2) that
(5.8  these variations are written in the form
k
a(t)=2t| coshu cosk+ —sinhu sink—l) + ag, n-1
M E " Yn)sJ_(n)E"= >, E-(+1y°t
ak |
ao=<P—F_k- X(I1+1)6QJ_(HE', (6.3
As a result, we obtain from Eg5.3) the AL soliton solution E"J:4(n)8J, (n)E"= -> E-(+Dg;1
[]_7] I=n
nhu X(1+1)8QJ, ()E',
up(t)=exdik(n—x)+ia]—-—. 5.9
n(t) HLik( ) a]cosh,u(n—x) 5.9 where 6Q,= (6Q,/t) 6t and we have usedJ.(n)—0 as

n— *+o. Hence, due to the definitiof2.4), we obtain from

Here and in what follows we write for simplicity cdsi(n Eq. (6.3 a variation of the scattering matrix:
—X)] as coshu(n—x). The AL soliton depends on four con- ss
stant parameterg, k, X, and ag which determine soliton . 1 1
mass 24, its group velocityv, = 2[ (sinhy)/u]sink, soliton St 1S (DS T=—leT Y (DT (64
maximum positiorx(t) and phasex(t).

It should be noted for later use that in the presence of &lere the matriceS. andT. are defined in Eq92.9) and
perturbation Egs.(5.8) are modified due to possible (2.11) and we introduce the matrix function

perturbation-induced evolution of the soliton parameters: N

2 [t Y. (N Np)= 2, E-CF DI+ )R, (DE!,
X(UZ;] sinhu(t’)sink(t")dt’ +xq(t), =

(5.10 Y. (2)=Y . (—%,2). (6.5

t
a(t)=2j [coshu(t")cosk(t")—1]dt’ Note that they are the analytical solutiods. that enter
naturally the matrice¥ . .
k[t _ Now we derive a variation oft, . We have from Eq.
+2—J sinhu(t")sink(t")dt" + aq(t). (2.9 that 6V, =8J,E"S,E "+J,E"6S,E". The first
# term on the right-hand side is transformed by means of Eq.
(6.9 toieV (N)E"Y ,(n,°)E~"5t, while the second term,
VI. PERTURBATION-INDUCED EVOLUTION due to Eq. (6.4 and a trick 8S,=6SMy, My,

OF THE RH DATA: EXACT RESULTS =diag(1,0), is written as—ie¥ ,(n)E"Y, (z2)M,E "6t.

Having formulated the basic ingredients of the RH ap-1herefore, the variation o’ (n) takes the form
proach to the AL system, we now proceed to the consider- sV .(n,z)
+ ’

ation of the perturbed AL equation =—ieV_ (n,z2)E"Il.(n,2 E™", (6.6

ot

. _ 2 _
UneUn 1+ Un-g = 2Un+ |Upl *(Ung 5 Un—a) Er“iG 0 wherell . is the evolution functional36] defined here by

The small parametes characterizes the perturbation ampli- 1, (nz)= Yoa(=n=1)  =Y.q2n,) . (6.7)
tude andr,, describes the functional form of the perturbation. Yi(=°,n=1) =Y, p(Nn,®)

To find corrections to the soliton caused by a perturbation, . ) .

we first derive the corresponding evolution of the RH data.Therefore, in the case of perturbations the evolutionary equa-
In order to distinguish between the “integrable” and “per- tion for \P+ gains the additional term responsible for the
turbative” contributions to the evolution equations, we will Perturbation:

assign the variational derivativé/ 6t to the latter. For ex- . _

ample, we writei du,,/St=er,,, as follows from Eq.(6.1), Vo=V -V O -ieV, ENLE™ 6.8

or, in matrix form, Similarly,

Q, . . [0 1y ow_?
i~ = <Ra. Rn=(r* 0)- (6.2 = =ieE"I_E~"¥ 1 (6.9
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with {(a/at)det«lu(z)
Z fp—
Y_py(—%,n=1) Y_j)(—o,n-1) W (gloz)detV, (z)

=Y _5(n,°) =Y _,(n,)

2y

II_(n,z)=
6.10 Because q§loz)detV , = —ietrll . detW¥, , detV

' =v.(n)a,(2) [see Eq.(2.10] and a (2)=(2*—23)(Z
and —?f)*l, the latter formula following froma, (z)=a,

—2), lima(z)—1 asz—> anda,(*z;)=0, we obtain a
T i=—V_WH+QU 4+ieEMT_E "U_1 (6.1) gim&e equgt?on )

Remarkably, the function¥ .. are interrelated by the matrix z,,=ieRes_, trIl. (n,z). (6.19
G entering the RH problem: !

It is important that left-hand sides of Eq$.18 and(6.19
do not depend on. Therefore, we can consider these equa-

The evolution functional$l . play the key role in the analy- tions forn—+o where

sis of a perturbation because they contain all needed infor- Y..(2) 0

mation about it[36]. It is seen from the definition§s.5), I, ( :( +11 )

(6.7), and(6.10 that the matrice$l.. are meromorphic¢and * Y, 5(z) O

E"II.E™" are boundedin C.. having simple poles at zeros i . )

of det¥, (z) and detr ~1, respectively. Further, the evolu- As a_result, the evolution equations for the discrete RH data
tion equation forG follows easily from Eqs(3.1), (6.8), and &€ finally written as

(6.11) and takes the form

Y_=GY,.G L (6.12

z;=ieRes_; Y . 11(2), (6.20
G=[Q,G]—-ie(GIl, —-I1_G), (6.13
| 0@ )t(Y(Jrrel%)(Zl) 0) 0 )t| 6.21
GC= _ =jiee 1 ela . (6.2
or, for G=exp(Qt)G exp(t), Pt Y(e(z,) 0 p)

-~ i Ca O Q -Q Ot~

Gi=—ie(Ge ™I, eM—e MI_eYG). (6.14 It should be noted that Eq#6.14), (6.20, and(6.21) are

exact. However, they cannot be directly applied because the
B. Discrete data matricesll.. andY .. depend on unknown solutionk.. of

the spectral problem with the perturbed potential. In the fol-

In the pointz . . X . >
P ! lowing sections we will describe for sufficiently smalithe

¥, (n,z;)|n)=0 (6.15 iterative RH problem-based procedure to consecutively ac-
count for two main approximations: the leading-order adia-
and near this point batic approximation and the next-ordghe first-ordey one.
1
,(2)= H(f“g)(z) + Z__ZlResi:ZlH+(Z)’ (6.16 VII. ADIABATIC APPROXIMATION

Within the adiabatic approximation, we ignore radiation
whereH(jeg) is the regular part ofl, in the pointz; and effects and assume that the soliton adjusts its hyperbolic se-
Res_, stands for the residue at=z;. It is shown in Ap-  cant shape to perturbation at the cost of slow evolution of the

pendix A that the evolution equation for the eigenvectorparam?ters; Evolutio_n eq.uations for the soliton parameters in
takes the form the adiabatic approximation have the form

_ i En (reg) -n ” Im(R,,)coshu(n—x
InY=Q(z,)|n)+ieEN(z) TT[*(z,)E~"(29)|n). pmesinhy S (Rp)coshu(n—x) |
(6.17) nZ=. coshu(n+1—x)coshu(n—1—Xx)
Remember that the dependence ofn) is given by Eq. 7.0
(4.10, |n)=E"(z,)|p), with the n-independent vecto|p). % . 3
Therefore, the perturbation-induced evolution of the vector | = — esinhy >, Re(Ry)sinha(n—x) ,
|p)=exd —Q(z)t]P) is governed by the equation n==« coshu(n+1—x)coshu(n— 1—X() )
7.2
Ip)i=iee™ @I 7)Y p), (6.18
2 ) €
For notational convenience, the exponent implies hereafter ~ Xt=—sinhu sink+ ;smh,u
the integration with respect to time for the time-dependent
discrete RH data. In the absence of perturbation, the vector - (n—x)Im(R,,)coshu(n—x)
[p) in Eq. (6.18 coincides with that in Eq(4.11). 11 R
Evolution of zeroz; is derived by taking the total time n== Coshu(n+1=x)coshu(n=1-x)
derivative of detV  (z;)=0. We obtain (7.3

066610-7
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k ,
a;=2| coshu cosk+ —sinhu sink—1
)7

+62

n=—ow

{ [(n—=X)sinhusinhu(n—X)
k
—coshu coshu(n—x) JRER,) + ;(n—x)

X sinhu coshu(n—x)IM(R,,)

X sechu(n+1—x)sechu(n—1—x). (7.4

Here R,=r.exd —ik(h—x)—i«] and r, is constructed by
means of the AL soliton solutioif5.9) . Equations(7.1)—

(7.3) have been obtained for the first time in RE23]. The

derivation of Egs.(7.1)—(7.4) within the RH problem ap-
proach is given in the Appendix B.

VIIl. RADIATION EFFECTS

PHYSICAL REVIEW E68, 066610 (2003

o —p_=eylTE'GE T 1, (8.3
Here we omit terms with higher order @fand invoke the
equality ° = ¢° [see Eq.(5.1)] valid in the adiabatic ap-
proximation. The Plemelj formula gives the following far
eC,:

!

1+ —
2 i

¥ (=95 (TE"gE""T'"1)(2')|.

l2=1 2" -z

Inserting herey, from Eq. (8.1) and performing the
asymptotic expansion at—«, we obtain the expansion co-
efficient

dz(TE"gE "I " 1)(2)
|zZ|=1

2qi 8.4

¢M(n)

determining the radiation correctio(8.2). Therefore, our
next step is concerned with finding the matgx
To this end, we turn to the evolution equatit14) for

The continuous part of the RH data describes a distortiothe matrixG which is evidently related tg:
of the soliton shape and emission of small-amplitude disper-

sive waves by soliton. To account for the continuous data, we

should abandon the conditioB=1 and admit az depen-
dence of the regular RH problem solutiogs. . In other
words, we pose

ge(n2)=y(N)[1+eh(n,2)],
(8.1

G=1+¢€g(2),

where ¢° stands for the solutiorf5.1) of the regular RH

problem (4.3) in the adiabatic approximation, whereas the

off-diagonal matriceg(z) and ¢(z) describe first-order cor-
rections. Therefore, the reconstruction form@h9 takes
now the form

[z¢2(1+€ep)T ]y,
Up=— lim—5—
oo [ (1+€) ]
= TN 5(n,0~ €N 2(n,0).

(8.2

The first term on the right-hand side of E®&.2) represents

g=e

g th

G=1+ €7, (8.5
Substituting this equation into E@§6.14), we obtain in the
first order ofe

ig=e M1, —1I1_)e (8.6)
Becaus€j does not depend on, we can putn—« in Eq.
(8.6) which gives
Y+11—Y,11 _Y12)

H+(n—>°°)—H—(n—>°0)=< 0

Yo

Moreover, it follows from Egs.(6.5 and (8.1 that Y _
=Y, in the first order ofe. As a result,

-Y + 12) em
0

0

i~ — Ot
1J:=¢€e
d (Y+21

the familiar soliton solution in the adiabatic approximation 5ng the equation fd,, takes the form

and the second one is responsible for radiatgmiiton shape
distortion. For the derivation of E(8.2) we employ the fact
that the off-diagonal matrixp satisfies the asymptotic condi-
tion p—z 1M +0(z7?) with

(1)

12

!

d’(l):(

Evaluation of¢{}) and hence of radiation corrections to

0
(1)
21

soliton solution reduces to solving the regular RH problemit

(4.3 with G as in Eq.(8.1). Indeed, we havey ty =1
+€el'E"g(z2)E""T'"! and the jump of the piecewise holo-
morphic  function ¥(z)={¢,(2),zeC, ;¢ _(2),zeC_}
across the contoye|=1 is written as

Gia=iexqd —i(z—z2 H%]Y 1. 8.7
It is important to stress that because 1, corresponds to the
first-order correction, we can replace in the definitiérb) of
Y, unknown solutiony, of the regular RH problen(8.3)
by the known oney? . Integrating then Eq(8.7), we can
find the matrixg (8.5).
The further stage is to consider the integrand in B).
can be shown from IE"9gE "T"1);,
=772 (T Y 10901+ 22T (T 1) 509,, and explicit ex-
pressiong5.7) for I' that the term withg,, is multiplied by
secfu(n—x—1) and hence vanishes at-=*%. As a re-
sult, we are left with

066610-8
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22
-z,

Z7 012,
-7

l1,=(FE"gE""T %)= \
12 12 27 N 154 Uy (1)

z7°g1p, N——.

n— 4o

22—z
(8.9
1.0
Let us summarize the main steps in calculating the radiation
correction for a given perturbatian,. First, we should ex-
plicitly find the functionY ,,,(z) from the definition(6.5)
with ¥ =¢9T, ¢° andT being given in Egs(5.1) and 0.5 u(®
(5.7), respectively. Then we integrate E8§.7) and obtain the
matrix g given in Egs.(8.5 and(8.1). For the known func- 14 . . . . . . . . >
tion g15(z) we obtain the integran¢B.8). Finally, after cal- 0 5 10 15 20 t
culating the integra(8.4) we arrive at the needed result. FIG. 2. Evolution of the soliton massn(=2x) and group ve-

. In the following section we I_Ilustrate th(_—:' p_roposed fqrmal- locity vy, in the case of linear damping fdr=7/4, €=0.03, and
ism on an example of calculating the radiation corrections to,u,(t=0)=1

the AL soliton in the case of some model perturbations.

IX. EXAMPLES Y.(2)= >, E-O"D(n+1)I Y(n+1)R,[(n)E"
n=-—owo
Here we apply our formalism to describe the perturbed (9.2
AL soliton dynamics for the typical representatives of dissi-
pative and conservative perturbations—linear dampipg Here
= —iu, and quintic perturbation,=|u,|*u,. The interplay

— (10— 510
between the dissipative and conservative perturbations for Ra=(42) " H(n+1RyS(n)
the AL model is considered in the adiabatic approximation 0 rlp(n,0) 2
by Abdullaev et al. [29] and numerically by Soto-Crespo =, 2z
et al. [41]. ral2(n+1,0 0
and

A. Linear damping

In this case RR,=0, ImR,,= —sinhu sechu(n—x), and I (1.0) = e coshu(n—x-1)
we have in the adiabatic approximation 2200 coshu(n—x)

k=const, sinfu=sinhug)e ¢, uo=pu(t=0), Substitutingl” andI" ~* (5.6) into Eq.(9.2), we arrive at

, A o-n+ia—ikx

me tan _ -1

Xi=Vgr— —5 = 2,u sin2mx, Sal st=kx,. Yi12=2 coshu—cogk—26)
e sinh( 7/ w)

X{[1—coshu cogk—26)]

In the process of obtaining the equation fqrwe use the o o
Poisson summation formu(0] XSy +isinhp sin(k—26)Sy},
where

~ 27Ss
1+2> cos—y}
s=1 M

oo 1 .
S tow=5 [ ayty)

NS . eikn,—2n COSh,u(n—x)]
sinhu(n—x)
5{1 = >

2 n= coshu(n—x—1)coshu(n—x+1)"

9.9

and, following Ref.[24], we restrict ourselves to the linear
harmonic term $=1) only. Higher harmonics contain the Calculating these sums by means of the Poisson formula
factor exp7?du) which for u~1 is evidently small. (9.1), we obtain a simple expression
Hence, mass of the soliton decreases exponentially, its group
velocity acquires a constant value @ sink) after some tran- m expl—utia—2iox)
sient period(Fig. 2), while its phase is governed by the evo- Y= E coshu cosh m(k—26)/2u]"
lution of the soliton position(t).

Now we embark on a calculation of radiation effects. Fol-Here we pose=exp(6) bearing in mind subsequent inte-
lowing the prescriptions of Sec. VIII we find at first the gration along the contoye|=1. What is more, because the
matrix function’Y ;. written in accordance with Eq6.5 as  radiation correction(8.2) is multiplied by €, we restrict our-

9.3
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and in general is asymmetric. Such a behavior agrees with
the asymptotic representation of the first-order correction for

it | n— +oo;

\“‘ “ [l t

i\ 10 (1) e —pt+iatik

| g Un(rac)= ~ €417 T2(N,0)~—~ 57 tanhu e (N—x)

"“\ ! =mSmee 6 . .
zi===2 R =y v §|nk _SlnhZ/.L H- 1l
sinhu 21

’ 9.9

P ‘20" N HereH = sinhu cosk—i coshu sink+(i/u)sinhu sink. It fol-
s o 5 10 b lows from this expression that there are no nonvanishing

FIG. 3. Evolution of the perturbed AL soliton,, (8.2) with linear waves an—co. The similar result takes place for

account of the first-order correction. The soliton parameters are the” *
same as in Fig. 2.

B. Quintic perturbation
selves to the leading term in each sum. Integrating then Eq.
(8.7) for §q, with Y, 1, of the form of Eqg.(9.3 and trans-

forming the result t@,, in accordance with EJ8.5), we get ReR,) =sintfPuseciu(n—x), Im(R,)=0
m e *  expia—2i6x) 1—e AN
~ uz coshy cosim(k—26)/2u]  A(6)

It follows from the results of Sec. VII that for

g1= we have in the adiabatic approximation

Here  A(60)=(k—20)vy +2(coshucok—cos®) and,
within the first-order approximation, we can takewgg and
vgr their initial values. Therefore, we arrive at the integrand
l15 (8.8) which determme_s the mtegn&B.é_l). This mt_egra_ll _ 2em sinttu
can be calculated by residues. The dominant contribution isk,=—— >
provided by the third-order residue in the poitz; (note K sinhTr—
that both cospr(k—26)/21] and A(6) have simple zero in 2
this poin). The resulting expression is rather lengthy and (9.9
does not reproduce here. Instead we plot in Fig. 3 the evo-

lution of the perturbed AL soliton,, (8.2 with account for ~\We do not write here the evolution equation for the phase
this expression. The shape of the soliton changes periodicalecause of its lengthy form, though it is found quite imme-
due to the discreteness of the system, with simultaneous déliately. Hence, soliton mass is preserved in the presence of
creasing of mass in virtue of damping. More detailed concluthe quintic perturbation, while the paramekgt) (and hence
sion about the first-order contribution can be inferred fromthe group velocity oscillates with a very small amplitude
Fig. 4 where a differencéu,|—|ug| is pictured. Hereug is ~ hear the initial value. Linear stability analysis demonstrates

the AL soliton in the adiabatic approximation. The shapethat the fixed points of the evolution®.5), ks=mm, m

sin ]
m=const, x;=2 . sink,

27 242
_+ R
pwtw?

3
sinfPu

L
3

sin 2mX.

distortion is mainly localized within the soliton “envelope” =0,=1,%2,..., andxs=1/2,1=0,£1,%2,..., arestable
for even(odd m and odd(even |.
-l =10 Radiative corrections for the quintic perturbation are
0.04 - much the same as for damping. Indeed, the func¥on,

takes the form
0.02

iy L sinhu
— A ptia—2i6x
0.00 - Yi=—5 € costi m(k—20)12u]
-0.02 X[P3(0)—2e'* 201 B(9)P,(0)],
where

-0.04

-10 0 10 20 30 40 n

0 .
sinhu

3
+(l—fsinhz,u>

1
P5(6)= §(cosh,u+i 3

FIG. 4. The differencdu,|—|ug for different time intervals
indicative of the shape distortion effect. Hargis the soliton in the
adiabatic approximation and the soliton parameters are the same as w
in Fig. 2. There are no long-lived nonvanishing dispersive waves.

coshu +i

0 . 2
sinhu +§cosh,u,
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1/k—26 4 1 1 APPENDIX A: PERTURBED EVOLUTION
P4(6)= ﬁ( Sinh,u,) -zl2+ §Sinhz,u,) OF EIGENVECTOR
k=20 2 4 In this appendix we derive Eq6.17). Taking the total
% sinhu | +=(1+cosfu) time derivative of Eq.(6.15 gives the following with ac-
2 count of Eqs(6.8) and(6.16):

—coshu cogk—26),
(V(n)‘l’+(n)—‘1’+(n)ﬂ—ie\I’+(n)[En]‘[(+fe§l)En

B(6)={sinhu[coshu—cogk—26)]} . +(z—21) 'Res_, (E"M,E™")]
J
Therefore, the integranky, is written as +tz V. (n) M +W(n,zy)[n)=0. (A1)
Z:Zl
sinhu 272 Let us introduce a holomorphic functiodl=—ie(z
| = — ——e K+ia Lo2(n-x)-1 —2,)EMI,E~" which evidently gives
2u coshm(k—26)/12u] 22_?1
_ 1 A Ml(zy)[n)=~ieRes_, [E'MI.(2)E "]In).  (A2)
X[P3(0)—2e' K20+ B(6)Py( 0>]W'
On the other hand, representihb, (z) from Eq. (6.8) as
with the sameA (6), as before. The result of calculation of —ieE'MT (E "=W MW, VIV, +Q,

the integral (8.4) with the above integrand has the same

structure as in Eq(9.4). What is more, the functio®;(6)  we obtain

—2€'k=29) peing zero forz=7z; does not contribute to the

n? order of the radiative correction. fi(zy)|ny=[(z— zl)\lfll\lfﬂ]zl|n>: —2zy|n). (A3)

Comparing Egs(A2) and(A3), we arrive at
X. CONCLUSION

We have proposed a formalism suitable for analytical in- ieRes_, [E"TL, (2)E™"][n)=2zyn). (A4)
vestigation of dynamics of the AL soliton subjected to a per-
.turbation. This formalism provides a possibility of calculat- Applying now ¥ . (z;) to both sides of Eq(A4), we obtain
ing both evolution of the soliton parameters andthe important identity
perturbation-induced radiation effects. Remarkably, it is the
RH problem-based ap_proach that_ has been proved to pe ef- ¥, (n,z;)Res_, (E'T,E""=0. (A5)
ficient for treating continuous nonlinear equations, both inte- 1
grable and nearly integrable, which turns out to be the natu- ) ) ) o
ral basis to study discrete nonlinear systems. We havEduations(A4) and(AS5) permit us to considerably simplify
demonstrated within this approach how to consistently adEd: (A1). Indeed, the last term in square brackets in @q.)
vance from an integrable to perturbed system, in so doing thi$ réarranged by means of E@\S) as
only ingredient that should be added to the formalism to

account for a perturbation is the evolution functiofla] (or | V() =V .i(zg) N n
IT_) introduced by Shchesnovi¢B6]. A natural step to fur- —le -7, Res—, [E"IL(2)E™] [n)
ther extend the applicability of analytical methods in the “1
theory of discrete nonlinear systems is to consider vector 9
AL-type solitons [42]. Work in this direction is now in =—le|--V.(2)| Res—,(E'TL,(2)E"")[n)
progress. 21
J
=~z V. (2)| In)
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APPENDIX B: ADIABATIC APPROXIMATION

Here we obtain within the RH problem approach Egs.

(7.2)—(7.4 which govern the adiabatic dynamics of the AL
soliton.

First of all we turn to Eq(6.20. In accordance with Egs.
(6.5, (4.1), (5.1, and(5.2) we write

Res—, Y . 1:(2)

Z I Yn+12)¢;%n+1)

n=—w

1
= Re%zzl

xﬁem(n)F(n,z)}
11

sinhu
2z

> F_(n+1)

n=—oo

r',5(n,0)r,
0

0
X r(n,
(Fzz(nﬂ,o)r: ) (n2]

With account of explicit expression$.6) and (5.7) for F _
andI” we obtain

ie

Zy = — Zzlsinh,u
“ R el’«(nfx)_ R* efl‘«(nfx)
% 2 n n ,
n==«» coshu(n+1—x)coshu(n—1—x)
where R,,=r,exd —ik(h—X)—ia]. Then from the definition

z,=exfd (1/2)(u+ik) ] we easily derive Eqg7.1) and(7.2).
In order to obtain Eqs(7.3) and(7.4), we should at first
calculateY (9(z,):

Y{®(z)= = nz [(3R,e*(" ™ —R*e~#N=N))sinhy + 2(R,coshu + R¥ e~
X sechu(n+1—x)sechu(n—1—x),
0 2n+1—ik(n—x)—ia
Y§Oz)=7 3 a_°

coshu(n+1—x)coshu(n—1—x)

n=-—x

1
+| e #+2e #"1 Ncoghy(n—x) + se

PHYSICAL REVIEW E68, 066610 (2003

Y(®9(z))=[Y(2)~(z—2;) 'Res—, Y(2)];,

= 2 E-(n+1)

n=-—w
sinhu
x| 1+ TF*“H 1) |R.[(n,zy)E"
1

sinhy 1)
Aoz 2, [E"P@F-(n+D)

1) n=—»

+ lim

XR,I'(n,2)E"(z)—
XRI(Nn,z21)].

E-(D(z)F_(n+1)
(B1)
HereR,= w;l(n+ 1)I32n</;+(n). The second term on the rhs

of Eq. (B1) gives the ratio 0/0 in the limiz—z;. Using the
I'Hopital rule, we ultimately arrive at

Y (°9)(z))
” nh
_ E(”“)(zl){(l— ZZ“ogF,(nH)
n=—o 1
sinhu
4—ZlF+(n+1) Ral'(n,zy)
sint? F_(n F.(n
4”F_(n+1>Rn( w_, 20
(z:—71)° (z3+7y)
sinhu N
—n 22, [o3,F-(n+1)R,I'(n,z1)] 1 E"(Z9).
Therefore,

ryer("=X) — 4R sechu(n+1—x)]

(B2)

3
coshu — Esinh,u) R,

2#(“X’sinh,u)R:—ZnSinh,u(Rﬁez”mX)R:) . (B3

Then we obtain from Eq6.21) the following evolution equations for the components of the velgipr

pltzlfY( g)(Zl)pl,

Por = eY(reg)(zl)ex;{ f

(21+212_2)dt}p1
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Because {§,/p,) =exp@+ig), we have the following from *
Eqg. (B2): Q=€ 2 [nsechu sechu(n—x)—coshu coshu(n—x)
n=—wx

d e < + isinhu sinhu(n—x) R R,)sechu(n+1—x)
—(atig)=— > [(3Re4N0—R*e #N X)sinhy ’ "
dt 4 n==e Xsechu(n—1—Xx).

+2n(R.e#(" ¥ —Rye #(n7) It follows from Egs.(5.8) and (5.10 that

X sinhu —2R* e* coshu(n—x)] 2 1 3
X;=—sinhu sink— —| | X+ = | wi+a; |,

x sechu(n+1—x)sechu(n—1—x) M 7 2

which results in k )
a;=2| coshu cosk+ ;smh,u sink—1
a=—esinh,u§ (n+§) + +1k +3 K K +
t ns 2 X 2Kt X 2 MMt ,U«at Pt
Im(Ry,)coshu(n—x) Inserting here Eqs(7.1), (7.2), (B3), and (B4), we finally

(B4)

coshu(n+1—x)coshu(n—1-x)’ obtain Eqs(7.3) and(7.4).
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